
Time-Sensitive Query Auto-Completion

Milad Shokouhi
Microsoft Research

Cambridge, UK
milads@microsoft.com

Kira Radinsky
Technion, Israel Institute of Technology

Haifa, Israel
kirar@cs.technion.ac.il

ABSTRACT
Query auto-completion (QAC) is a common feature in mod-
ern search engines. High quality QAC candidates enhance
search experience by saving users time that otherwise would
be spent on typing each character or word sequentially.

Current QAC methods rank suggestions according to their
past popularity. However, query popularity changes over
time, and the ranking of candidates must be adjusted ac-
cordingly. For instance, while halloween might be the right
suggestion after typing ha in October, harry potter might be
better any other time. Surprisingly, despite the importance
of QAC as a key feature in most online search engines, its
temporal dynamics have been under-studied.

In this paper, we propose a time-sensitive approach for
query auto-completion. Instead of ranking candidates ac-
cording to their past popularity, we apply time-series and
rank candidates according their forecasted frequencies. Our
experiments on 846K queries and their daily frequencies
sampled over a period of 4.5 years show that predicting the
popularity of queries solely based on their past frequency
can be misleading, and the forecasts obtained by time-series
modeling are substantially more reliable. Our results also
suggest that modeling the temporal trends of queries can
significantly improve the ranking of QAC candidates.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval—Search Process, selection process

General Terms
Algorithms, Measurement, Experimentation

Keywords
Query auto-completion, temporal ranking, time-series

1. INTRODUCTION
Query auto completion (QAS) is a feature incorporated

in essentially every search engine, where the goal is to save

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$10.00.

user time by predicting user’s intent and suggesting possible
other queries matching the first few keystrokes typed. The
filtering of related candidates (query suggestions) is typically
based on string matching, and the ranking is ideally based
on the likelihood of the filtered candidate being the query
which the user has in mind. The latter challenge (ranking)
is the focus of this paper, for which the goal is to sort queries
according to their expected popularity. The common prac-
tice is to use past frequencies as proxy for future popularity
[2, 8]. However, those approaches assume that user intent
is static and does not change over time. Simple aggregation
can overshadow the temporal trends that could potentially
provide valuable signals for better ordering of QAC candi-
dates.

Consider the example in Figure 1 where a user has typed
di in Google query box on Sunday, February 12th, 2012. At
the first glance, knowing that dictionary is generally a more
frequent query than disney, it might be difficult to notice
how the ranking might be improved. However, looking at
the daily trends for these queries in Figure 2 reveals that
disney is more popular on weekends. Hence, given that the
first snapshot was taken on a Sunday, swapping disney and
dictionary could lead to a better ranking at the time of this
query. Similar observations can be made for different gran-
ularity of time-spans. For instance, previous work [4] has
shown that users are more likely to search for entertainment-
related queries at night, while queries related to personal
finance are more common in the morning. Therefore, the
ranking of QAC candidates can vary dynamically even ac-
cording to the time of the day.

In this paper, we add time-sensitivity to ranking auto-
completion candidates. We consider the temporal variations
of query popularity in ranking QAC suggestions, that are
normally shadowed by aggregation. Rather than summariz-
ing the entire query history in one aggregated number as
expected popularity, we rely on shorter but more frequent
aggregation of data, and model the overall query trends by
time-series. We show that the expected popularity values
produced by our time-sensitive approaches are closer ap-
proximations to what will be observed later in the logs, and
are more effective for ranking QAC suggestions.

The contributions of this work are three-fold: First, we
study the shadowing problem that is caused by ignoring the
temporal variations of query frequency in data aggregation.
We investigate several aggregation options and show that
query popularity predictions based on shorter but more re-
cent data are more accurate than those produced based on
aggregation over longer periods. This simple and counter-

Figure 1: Google auto-completion candidates after
typing di on Sunday, February 13th, 2012.

Figure 2: Daily frequencies for queries dictionary
(red) and disney (blue) during January 2012 accord-
ing to Google Trends (the snapshot was taken on
Monday, 13-Feb-2012). Among the two queries, dis-
ney is more popular on weekends, while dictionary
is issued more commonly by users on weekdays.

intuitive finding, can be useful in scenarios where applying
more sophisticated time-series models is feasible. Second,
we introduce a time-sensitive query auto-completion model
in which the expected popularity of each query suggestion
is forecasted by time-series, and dynamically varies depend-
ing on the time of query. Finally, we perform a large scale
analysis over 4.5 years of sampled log data, and evaluate our
predictions on daily and monthly intervals. Our experimen-
tal results indicate that accurate query popularity forecasts
are essential in generating high quality QAC rankings.

2. RELATED WORK

Query auto-completion. Auto-completion during typing
is a familiar feature and has been utilized in several applica-
tions ranging from early UNIX Shells to modern text editors
and web browsers.

Previous work on auto-completion can be grouped into
two main categories; the first group (also referred to as
predictive auto-completion [8]) deploys information retrieval
and NLP techniques to generate and rank candidates on the
fly as the user enters new words and characters [13, 18, 27].
For instance, Grabski et al. [18], and Bickel et al. [6] stud-
ied sentence completion based on lexicon statistics of text
collections. Fan et al. [17] ranked AC candidates according
to a generative model learned by Latent Dirichlet Alloca-
tion (LDA) [7]. White and Marchionini [33] developed a
real-time query expansion system that produces an updated
list of candidates based on the top-ranked documents as the
user types new words in the search box.

In the second group of AC techniques — including this
work — candidates are pre-generated and stored in tries
and hash tables for efficient lookup. The list of candidates is
updated by new lookups with each new input from the user.

The filtering of candidates in this group is typically on the
basis of exact prefix matching.1

The ranking in lookup techniques is based on static scores
that are assigned to candidates according to their impor-
tance. For example, in a product engine such as amazon.com
with products names as candidates, static scores can be as-
signed according to popularity, price or the review scores
of products [8]. In the context of web search, the most con-
ventional approach is to rank candidates (query suggestions)
according to their past popularity. In the most related study
to our work, Bar-Yossef and Kraus [2] referred to this base-
line as MostPopularCompletion (MPC) and suggested that
it can be regarded as an approximate maximum likelihood
estimator. The authors also proposed a context-aware tech-
nique in which the default static scores for the candidates
are combined with contextual-scores based on recent session
history to compute the final ranking.

We also take MPC [2] as our QAC ranking baseline and
show that it can be improved significantly by considering the
temporal characteristics of queries. Our work is orthogonal
to all aforementioned techniques; for instance, using error-
tolerant data structures that support fuzzy matching [8, 20]
can expand the list of candidates that are eligible for our
temporal modeling. Our work can be also combined with
the hybrid framework of Bar-Yossef and Kraus [2] to improve
the ranking of candidates with no or little context.

Time-sensitive search. The world is constantly changing
and the dynamics of daily life are reflected on the web in the
forms of fresh content and new information needs. Different
aspects of freshness in web search have been explored; Jones
and Diaz [21] and Li and Croft [24] extended the language
modeling framework to incorporate the time extracted from
document time-stamps. Berberich et al. [5] matched ex-
plicit temporal expressions in queries with the time-stamps
mentioned in documents in a query likelihood approach for
ranking. Their work was extended by Kanhabua and Nørv̊ag
[22] that used the content of top-ranked documents for ap-
proximating the most related time-interval for the query.

Elsas and Dumais [16] showed that there is a strong con-
nection between the rate of content changes in a document
and its relevance. They proposed a probabilistic ranking
model in which the term weights vary according to their
temporal characteristics. Relatedly, Efron [15] investigated
using linear time-series models for term weighting. Dai and
Davison [11] introduced a time-sensitive version of PageR-
ank based on multiple crawls and showed that it can be used
as an effective static score for document ranking. Dong et
al. [14] and Dai and Davison [12] integrated freshness in
learning to rank by introducing new ways of optimizing for
both freshness and relevance.

Kulkarni et al. [23] classified queries into different cate-
gories based on their change of popularity over time. The
authors showed that monitoring the query popularity and
content updates can reveal useful signals for detecting the
change in query intent. Metzler et al. [26] classified queries
with implicit temporal intent (e.g. halloween) according to
their previous occurrences in the logs along with explicit
temporal expressions (e.g. halloween 2010). Shokouhi [31]

1Recently, Chaudhuri and Kaushik [8] and Ji et al. [20]
proposed flexible fuzzy matching models that are tolerant
to small edit-distance differences between the query (prefix)
and candidates.

leveraged time-series decomposition techniques for classify-
ing seasonal queries.

Chien and Immorlica [9] demonstrated that queries with
similar temporal patterns (e.g. halloween and pumpkin) can
be semantically related despite no lexical overlap. Liu et al.
[25] introduced a unified model for forecasting query fre-
quency in which the forecast for each query, is influenced by
the frequencies predicted for similar and correlated queries.
Vlachos et al. [32] developed a compressed representation
for time-series and proposed a model for detecting significant
bursts in query frequencies. Baraglia et al. [3] investigated
the impact of aging on query flow graphs and in the pres-
ence of evolving query trends. They argued that generating
the graphs from scratch may not be feasible and described
an incremental approach for more efficient updates. Alfon-
seca et al. [1] clustered queries according to their frequency
time-series. They suggested that their approach can be used
for query suggestion and query categorization. Zhang et al.
[34] reranked documents based on their time-stamps in snip-
pets and suggested that their approach can improve search
effectiveness for temporal queries.

Radinsky et al. [29] have performed an analysis of pre-
dictability of different user behaviors (such as query clicks,
URL clicks and query-URL clicks) using time-series analy-
sis and a learning model. Similarly, Cho and Varian [10]
and Shimshoni et al. [30] study the general applicability
of time-series analysis for modeling query trends. However,
those studies have been performed on small sets of queries
(≈10,000 queries) and of short periods of time (6 months),
disallowing identification of long term yearly seasonality. In
our work, we perform rigorous analysis of a large scale cor-
pus of 846K queries over a period of 4.5 years for the purpose
of better query suggestions.

While it is clear that freshness has been considered in
several areas of web search, to the best of our knowledge,
this is the first time that the temporal trends of queries are
modeled and used for QAC ranking.

3. TIME-SENSITIVE AUTO-COMPLETION
In a typical QAC scenario, the user is presented with a list

of query suggestions that their prefix matches the text en-
tered in the search box. In this paper, we refer to the latest
text in the search box as prefix (e.g. “di” in Figure 1). The
prefix is updated as the user enters new characters and will
eventually match the final query once the query is submit-
ted. For each prefix P, the list of candidates C(P) consists
of all previous queries that start with P.2 The list of can-
didates is dynamically updated at run-time with each new
character typed by the user.

Ideally, the candidates should be ranked based their like-
lihood of matching the query that the user has in mind. In
the absence of any contextual information, this likelihood
can be set according to the wisdom of crowds by using the
general frequency in the past as a proxy for the expected
popularity in future. The most common approach is to ag-
gregate the query frequencies over a query log, and use these
aggregated values for ranking QAC suggestions. Bar-Yossef
and Kraus [2] referred to this general form of QAC ranking
as MostPopularCompletion (MPC) where,

2Without the loss of generality we ignore more advanced
fuzzy matching techniques [8, 20] in our work.

MCP(P) = arg max
q∈C(P)

w(q), w(q) =
f(q)∑
i∈Q f(i)

(1)

here, f(q) denotes the number of times the query q occurs
in a previous search log Q. Under the MPC model, the can-
didate scores do not change as long as the same query log
Q is used. Each query is represented by a single value as
its popularity which is computed by counting the number
of times that it has occurred in the past. As long as Q is
not replaced by a fresher log, the assumption is that the
aggregated frequencies can be regarded as reasonable ap-
proximations for future popularity. However, as mentioned
earlier, the query popularity may change over time and the
candidate lists must be adjusted consequently to account for
recent changes.

While frequent updates of query statistics may address the
freshness problem to some extent, it is not clear how often
the logs must be updated to provide the best approxima-
tions for future popularity. Without the right update pol-
icy, trend effects will be disregarded. For example, a query
such as Sarah Burke that gained high popularity in January
2012, but was not queried as often in the past, might get
lower ranking if compared to the query Sarah Palin, which
has high volume, since it was queried for many years, despite
being relatively less popular in January 2012. Furthermore,
aggregation methods ignore seasonal effects. For instance,
at the time of this writing on 13th February 2012 – a day be-
fore the Valentine’s day – Google suggests verizon wireless
as top candidate for v and does not suggest any Valentine’s
related candidate in the QAC ranking (the top plot in Fig-
ure 3). The query frequency trends in the bottom plot of
Figure 3 however clearly show that valentines day is tem-
porally more relevant for suggestion. As another example,
weekly patterns such as those shown in Figure 2 for dis-
ney and dictionary disappear in monthly aggregations. In
summary, the past is not always a good proxy for future par-
ticularly for trendy and seasonal queries. Today’s frequency
for query dictionary is not necessarily the best estimate for
its frequency tomorrow.

We propose TS, a time-sensitive QAC ranking model in
which the default aggregated candidate scores in Equation 1
are replaced with forecasted values computed by time-series
modeling of query history. Here, the score of each candi-
date at time t is determined according to its predicted value
calculated using time-series models that capture trend, sea-
sonality. Hence, our time-sensitive QAC ranking model can
be formalized as,

TS(P, t) = arg max
q∈C(P)

w(q|t), w(q|t) =
ŷt(q)∑
i∈Q ŷt(i)

(2)

where P is the entered prefix, and C(P) represents its list of
QAC candidates, and ŷt(q) denotes the estimated frequency
of query q at time t. As a result, the quality of a candidate
list generated by our TS model is directly influenced by the
accuracy of predictions obtained by time-series modeling.
Note that, our time-sensitive model becomes similar to the
context-sensitive QAC ranking of Bar-Yossef and Kraus [2] if
one considers time as “context”. The focus of our work is on
the time-sensitivity of query suggestions, and on how we can
enhance QAC to handle this aspect. We leverage techniques
from time-series analysis to model temporal query behavior

Figure 3: (Top) The auto-completion candidates
ranked by Google on 13th February 2012, a day be-
fore Valentine’s. (Bottom) The query frequencies
for valentines day vs. verizon wireless since 2004.

(Section 3.1), and demonstrate how these models can be
learnt from query logs to do better QAC ranking (Section
3.2).

3.1 Time-Series Analysis & Forecast
A time-series consists of a sequence of data points in suc-

cessive time order and with uniform intervals. Hence, an-
nual salaries, the daily rate of CO2 emissions and any other
sequence of numbers collected at uniform intervals can be
represented by a time-series. In practice, time-series analy-
sis is often used to model the temporal changes in data and
to forecast future trends.

At any given time, the Exponential smoothing methods
[19] apply a weighted average over the frequencies of pre-
vious data points to forecast the upcoming trends. In the
simplest form — also known as Single exponential smoothing
— the time-series is smoothed as follows,

ȳt = λyt + (1− λ)ȳt−1 (3)

where yt and ȳt respectively denote the actual and smoothed
values for the data at time t, and λ is the smoothing param-
eter ranging between 0 and 1. The recursive equation above
can be also used to provide the forecast for the next interval
(ŷt+1). That is,

ŷt+1 = ȳt (4)

While single exponential smoothing may produce reasonable
forecasts for stationary time-series, it performs poorly in the
presence of a trend in time-series. To remedy this problem,
Double exponential smoothing methods extend the previous
model by introducing a trend variable Ft,

ȳt = λ1yt + (1− λ1)(ȳt−1 + Ft−1) (5)

Ft = λ2(ȳt − ȳt−1) + (1− λ2)Ft−1 (6)

Here, parameter Ft models the linear trend of time-series
at time t, while λ1 and λ2 are smoothing parameters. As
in previous equations, yt and ȳt represent the actual and

Figure 4: The black line shows monthly frequency
values for query spring flowers between Sep’06–
Jun’11. The green curve depicts the predicted val-
ues for the next 24 months (Jul’11–Jun’13) based on
triple exponential smoothing. Data from bing.com.

smoothed values at time t. The forecast for the next interval
based on double exponential smoothing can be obtained by:

ŷt+1 = ȳt + Ft (7)

That is, the value of the next data point at time t + 1 is
predicted by linear combination of the smoothed value at
time t and the latest trend parameter Ft. Hence, a negative
Ft sets a smaller predicted value for the next time interval
(t+ 1), compared to the most recently observed value yt.

Double exponential smoothing does not capture the fre-
quency variations due to potential seasonality (periodicity)
in the data. Triple exponential smoothing generalizes the
previous techniques by explicitly modeling the seasonality.
The updated model — also known as HoltWinters smooth-
ing — is often expressed as:

ȳt = λ1(yt − St−τ) + (1− λ1)(ȳt−1 + Ft−1) (8)

Ft = λ2(ȳt − ȳt−1) + (1− λ2)Ft−1 (9)

St = λ3(yt − ȳt) + (1− λ3)St−τ (10)

λ1 + λ2 + λ3 = 1 (11)

where St captures the seasonality of data at time t, and
τ specifies the length of periodic cycle (e.g. 12 for annual
cycles when the data points represent monthly frequencies).
The smoothing parameters λ1, λ2, and λ3 vary between 0
and 1 and can be optimized using standard techniques such
as maximum likelihood. The forecast for the value of the
time-series at the next interval is given by:

ŷt+1 = (ȳt + Ft)St+1−τ (12)

Figure 4 illustrates an example of applying triple exponen-
tial smoothing for forecasting future trends. The underlying
data comprises of monthly frequency values for query spring
flowers sampled from logs of bing.com between September
2006 and June 2011. The green curve shows the forecast for
July 2011 – June 2013 (τ = 12).

3.2 Parameter Estimation and Forecasting
In this work we utilize a hill-climbing optimization tech-

nique called limited-memory BFGS (L-BFGS), which is a
limited memory variation of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS). The technique estimated the direction by

solving the following Newton equation:

Bkpk = −∇f(xk) (13)

where Bk is the approximation of the Hessian matrix at step
k, and f =

∑
ε2 is the sum of the prediction error rates. The

initial values B0 and x0 are guessed, and a line search in the
direction at step k is then used to find the next point xk+1,
and a new value of the matrix Bk+1 is estimated [28].

4. EVALUATION
Our first set of experiments focuses on forecast accuracy

while in the second part we evaluate the effectiveness of QAC
rankings. For each task, we borrow a couple of metrics from
information retrieval and statistics for measurement.

Forecast accuracy. Mean absolute error (MAE) is widely
used in statistics to measure the accuracy of forecasts and
is defined as follows,

MAE =
1

n

n∑
i=1

|ŷi − yi| (14)

where y is the true value and ŷ is the prediction. MAE is an
unbounded measure and is not strongly resilient to outliers.
Therefore, its is often used along with other metrics such
as Symmetric mean absolute percentage error (SMAPE) to
diagnose the forecast variation. SMAPE is defined as,

SMAPE =
1

n

n∑
i=1

|ŷi − yi|
ŷi + yi

(15)

In contrast to mean absolute error, SMAPE is bounded
between 0 and 1, although it penalizes under- and over-
estimations unequally.

QAC quality. In the absence of any contextual and per-
sonalized information, the ground-truth QAC ranking for a
prefix P is the list of all queries that start with P (or are
somehow filtered for the prefix) ordered according to their
true popularity. At any given time t, the true popularity val-
ues are set according to the observed query frequency values
at that time. Obviously, this information is not available to
QAC ranking models at runtime, and they have to rely on
historical data at time t − 1 and before to rank candidates
as close as possible to this unobserved ground-truth (G).

We measure the quality of QAC lists by computing their
Spearman correlation (ρ) against this gold standard G. We
also employ MRR to specifically measure the mean recipro-
cal rank of the best ground-truth candidate (top-ranked in
G) in QAC rankings.

Small differences in query frequency can cause significant
changes in the ordering of QAC candidates. Both MRR and
Spearman correlation penalize swapping two queries with
similar frequencies the same way they penalize swapping a
pair with a substantial gap in popularity. Consider a sce-
nario where the user has typed hall in the search box in
October, and the QAC model has to rank the following can-
didates: halloween, halloween party games, and halloween
party ideas. The first candidate is orders of magnitude more
popular than the other two which more or less have simi-
lar frequencies. Clearly, pairwise swappings that involve the

first candidate should be rewarded or penalized more heavily
than the pairwise swapping of the other pair.

To make our evaluation more robust against the potential
noise caused by insignificant differences, we first take a log of
— true/predicted — query frequencies and then round them
to the closest integer across all our QAC ranking evaluations.

5. DATA
Our experimental data comprises of all queries that were

submitted to bing.com by users – with a US-based IP ad-
dress – between January 1st, 2007 and June 30th, 2011. We
dropped queries that never appeared more than 28 times
in at least one of the months during this period. In total
846,432 queries and their daily frequencies were extracted.

The quality of QAC candidates can vary depending on
the amount of historical data available for each query. The
effectiveness of time-series techniques for modeling the query
trends is also sensitive to the amount of training data and
the length of seasonal cycle (τ in Equation 12). Therefore,
we use our sampled query statistics to construct two testbeds
with distinctive characteristics.

Daily buckets, weekly cycles (D-W). Our first testbed is
generated from daily query frequency values between Jan-
uary 2nd, 2011, and June 30th, 2011 (180 days). For each
query at time (day) t, we use the frequencies at all previous
intervals (previous daily frequencies) to fit the time-series
models. We consider the last 30 days (June 2011) as our
testing period for reporting the results. We set the τ value
in time-series models to 7 which would allow them to capture
potential weekly cycles in query frequency.

Monthly buckets, annual cycles (M-A). We aggregated
the daily frequency values between January 2007 and June
2011 in monthly buckets . Hence, the history of each query
is represented by 54 data points one for each month covered
during our sampling time-frame. We report our evaluation
results on the first 6 months of 2011. Here, we set the τ
parameter in our time-series models to 12, to allow modeling
of potential annual cycles.

Compared to the previous testbed, there are fewer data
points for time-series modeling of query trends, and there is
less variance and sparsity in query frequencies.

6. PREDICTING QUERY POPULARITY
In an oracle list of QAC suggestions, candidates are sorted

in descending order of their true popularity. Since this
ground-truth information is unavailable at runtime, QAC
ranking models order candidates according to their expected
(predicted) popularity inferred from previous logs.

Our TS auto-completion method models the entire query
history by time-series and forecasts the future popularity
accordingly. The MCP method [2] that we use as our base-
line assumes that the aggregated frequency of a query over
past search logs is a reasonable approximation for its future
popularity. Surprisingly, little is known about the validity
of this assumption and its impact on the ranking of QAC
candidates. Furthermore, the trade-off between the recency
(and size) of the query log used for aggregation, and the
accuracy of outcome predictions has not been investigated.

In this section, we evaluate the accuracy of various meth-
ods for predicting the future query popularity, and in the

Table 1: The forecast error rates obtained by dif-
ferent methods on the D-W testbed. The query fre-
quencies are predicted once for each of the 30 days in
the testing period (June 2011). The best performing
method in each row is specified by an underline. All
(TS vs. P∗) and (TMS vs. P∗) pairwise differences
are detected as statistically significant by the t-test
(p < 0.01).

P1 P3 P6 P12 Ph TS TMS
MAE 14.02 23.37 23.62 24.05 23.12 10.57 10.50
SMAPE 0.277 0.272 0.273 0.275 0.270 0.228 0.251

next section we measure the impact of these predictions on
the quality of QAC rankings.

Forecast quality. MCP considers the past query frequency
as expected popularity for future. For this, the query fre-
quencies are aggregated over a past query log. We explore
several aggregation options by averaging the query frequen-
cies over the last k intervals (k ∈ {1, 3, 6, 12}), and also over
the entire query history. We refer to latter form of aggrega-
tion as Ph and denote the others by Pk where k is the num-
ber of previous intervals used for averaging. We study the
accuracy of these aggregated baselines in predicting future
query popularity, and compare them against the forecasts
produced by our time-series modeling of query trends (TS).

Table 1 includes the forecast error rates of different meth-
ods on the D-W testbed. The frequency of each query is
forecasted once for each of the 30 days in our testing pe-
riod (June 2011). At each time t, the Pk baselines use the
average frequency of the past k days as their prediction.
Ph computes the average over the entire query history be-
fore t. The TS model also uses the entire previous history
but produces its forecasts by triple exponential smoothing
(τ = 7). For now, ignore the TMS column as we will get
to it later. The numbers show that our TS predictions are
better than all aggregated baselines on both metrics; all dif-
ferences are detected as statistically significant by the t-test
(p < 0.01). Among the aggregated baselines, MAE favors
P1 while SMAPE picks Ph as the best model. The discrep-
ancy suggests that averaging over the entire history provides
more robust predictions overall but may fail more noticeably
on outliers.

We take a closer look at the daily error rates produced by
the best three methods (P1, Ph, and TS) in Figure 5. The
results are consistent with the overall numbers; the MAE
rates have higher variance and Ph is more robust than P1

although it may produce greater absolute errors. Ph per-
forms worst over the weekends and P1 errors are highest on
Saturdays and Mondays. This can be explained by the fact
that search traffic is generally lower on the weekends, and
grows again on Mondays. P1 is constantly one step behind
to react to these changes and Ph is too stale in general.

We repeated our analysis on the M-A testbed and summa-
rized the results in Table 2. All methods produce 6 forecasts
for each query, one for every month in our testing period
Jan–June 2011. The Pk baselines use the average frequency
of the past k months as their forecast while Ph computes
the average over the entire query history since January 2007.
The TS model also uses the entire previous history but pro-
duces its forecasts by triple exponential smoothing (τ = 12).
Once again, ignore the values under the TMS column as

Table 2: The forecast error rates obtained by dif-
ferent methods on the M-A testbed. The query fre-
quencies are forecasted once for each of the 6 months
in the testing period (Jan–Jun 2011). The best
performing method in each row is specified by an
underline. Except for (MAE, k = 1), all (TS vs. P∗)
and (TMS vs. P∗) pairwise differences are detected
as statistically significant by the t-test (p < 0.01).

P1 P3 P6 P12 Ph TS TMS
MAE 338 1065 1108 1189 1012 343 323
SMAPE 0.168 0.330 0.346 0.381 0.313 0.179 0.164

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

SM
A

PE

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

M
A

E

0
200
400
600
800

1000
1200
1400 P1 Ph TS TMS

Figure 6: Daily SMAPE (top) and MAE (bottom)
rates for P1, Ph, TS and TMS predictions on the
M-A testbed (January–June 2011).

they will be described later. The numbers show that with
the exception of P1, our TS predictions are better than all
aggregated baselines on both metrics; all differences are de-
tected as statistically significant by the t-test (p < 0.01).
The difference between P1 and TS is statistically significant
on SMAPE but not so according to MAE. The competitive
performance of P1 on this testbed can be explained by sev-
eral reasons; compared to the daily frequency values used
the in D-W testbed, the data here is aggregated in monthly
partitions. The monthly query frequencies are less sparse
and have lower variance. Furthermore, the TS model has
about 6 times more data points in the D-W testbed which
allows it to fit the query trends better.

Figure 6 illustrates the monthly error rates for different
methods. While the trends are consistent with the overall
numbers, it is interesting to note the higher error rate of P1

for January which is due to the change of year and end of
holiday season.

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

10
th

11
th

12
th

13
th

14
th

15
th

16
th

17
th

18
th

19
th

20
th

21
st

22
nd

23
rd

24
th

25
th

26
th

27
th

28
th

29
th

30
th

SM
A

P
E

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

W
ed

, 1
st

T
hu

, 2
nd

Fr
i,

3r
d

Sa
t,

4t
h

Su
n,

 5
th

M
on

, 6
th

Tu
e,

 7
th

W
ed

, 8
th

T
hu

, 9
th

Fr
i,

10
th

Sa
t,

11
th

Su
n,

 1
2t

h

M
on

, 1
3t

h

Tu
e,

 1
4t

h

W
ed

, 1
5t

h

T
hu

, 1
6t

h

Fr
i,

17
th

Sa
t,

18
th

Su
n,

 1
9t

h

M
on

, 2
0t

h

Tu
e,

 2
1s

t

W
ed

, 2
2n

d

T
hu

, 2
3r

d

Fr
i,

24
th

Sa
t,

25
th

Su
n,

 2
6t

h

M
on

, 2
7t

h

Tu
e,

 2
8t

h

W
ed

, 2
9t

h

T
hu

, 3
0t

h

M
A

E

0

10

20

30

40
P1 Ph TS TMS

Figure 5: Daily SMAPE (top) and MAE (bottom) rates for forecast models on the D-W testbed (June 2011).

Success & Failure Analysis. We picked P1 and TS as the
two most effective methods according to the overall metrics
and inspected their performance on per-query basis.

On the D-W testbed, lower error rates for TS versus P1

are most apparent in queries with highly periodic frequency
trends. Figure 7 depicts the actual and predicted frequencies
for queries nascar and irish lottery as two examples from
this category. The P1 gains over TS often come from queries
that were either periodic and highly popular but suddenly
lost their demand (e.g. recently ended tv shows), or those
that face an unexpected spike in popularity (e.g. celebrity
names). Figure 8 shows two of these examples for queries
american idol and ginger lee.

We also grouped the TS weekday winners by extracting
the queries that their TS predictions are better than P1 on
those weekdays, consistently over the entire testing period
(June 2011). The top winners for each day are listed in
Table 3.3 As expected all these queries have periodic trends
and are related to intents that have weekly cycles. The list
is dominated by queries related to lottery (e.g. euromillion),
tv shows (e.g. zero punctuation) and those targeting weekly
deals (e.g. dominos) or updates (e.g. week in pictures).
There were no weekday losers apart from queries that were
related to americal idol and dancing with the stars, the two
tv shows that their latest series ended in May 2011, just
before the start of our testing time period.

Similar patterns can be observed on the M-A testbed. TS
is more effective in predicting the frequency of queries with
seasonal trends, while it fails to adapt quickly when there is
a sudden change in the query popularity. Figures 9 and 10

3For presentation purposes, we excluded queries that have
high overlap with those already included in the list. For
example, abc family is dropped when abc is already included.

Table 3: A sample of queries where TS performs
substantially better than P1 consistently on certain
weekdays during the testing period (June 2011).

Mon dear prudence; fedex tracking; gmail; · · ·
Tue euromillion; abc; daily show; dominos · · ·
Wed mega millions; publix; zero punctuation · · ·
Thu louisiana lottery; footy tips; olg; · · ·
Fri week in pictures; nascar; cinemex · · ·
Sat irish lottery; wclc; toto; · · ·
Sun wisconsin unemployment; mail on sunday; ncesc; · · ·

contain four examples of significant wins and losses for TS
versus P1.

Temporal model selector (TMS). Our results so far have
shown that when it comes to query frequency forecast mod-
els, there is no one size fits all method that always wins.
For queries with an unexpected spike in particular, the time-
series models tend to overfit when trying to optimize their
smoothing parameters. Motivated by this observation, we
propose a temporal model selector that dynamically decides
which forecast model to choose at each time-interval for the
query. For this purpose, we consider a segment of query
history as the validation period and decide between differ-
ent models according to their performance on this segment.
The validation process can be designed in different ways. For
instance, one can pick the model that has the lowest error
rate on the entire validation set. Alternatively, it is pos-
sible to train a classifier that takes in monthly error rates
and other features for supervised model selection. We de-
cided to take a simple approach and left more sophisticated

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

irs

Fr
eq

ue
nc

y

0e+00
1e+05
2e+05
3e+05
4e+05
5e+05
6e+05 Actual P1 TS

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

australian open

0

50000

100000

150000

200000
Actual P1 TS

Figure 9: (left) The actual daily frequencies and the predicted values by P1 (SMAPE ≈ 0.26) and TS (SMAPE
≈ 0.18) for query irs between Jan–Jun 2011. (right) Same data for query australian open by P1 (MAE ≈ 0.52),
and TS (SMAPE ≈ 0.49). TS is more successful in predicting the frequency of queries with seasonal trends.

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

10
th

11
th

12
th

13
th

14
th

15
th

16
th

17
th

18
th

19
th

20
th

21
st

22
nd

23
rd

24
th

25
th

26
th

27
th

28
th

29
th

30
th

nascar

Fr
eq

ue
nc

y

0

5000

10000

15000
Actual
P1
TS

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

10
th

11
th

12
th

13
th

14
th

15
th

16
th

17
th

18
th

19
th

20
th

21
st

22
nd

23
rd

24
th

25
th

26
th

27
th

28
th

29
th

30
th

irish lottery

Fr
eq

ue
nc

y

0
500

1000
1500
2000 Actual P1 TS

Figure 7: (Top) The actual daily frequencies and
the predicted values by P1 (SMAPE ≈ 0.19) and TS
(SMAPE ≈ 0.06) for query nascar in June 2011.
(Bottom) Same data for query irish lottery by P1

(SMAPE ≈ 0.52), and TS (MAE ≈ 0.09). TS is more
successful in modeling the periodic trends.

models for future work. At each time interval t, we test the
performance of — P1 and MS — forecast models at times
t − τ, t − 2τ, ..., t − kτ as long as they are included in the
validation segment. We then pick the model that wins more
often on the selected months. We break any tie by backing
off to the model that has lower SMAPE on the entire valida-
tion set. In nutshell, the validation step reduces the risk of
using time-series forecast models that overfit their smooth-
ing parameters to fit an unexpected recent burst. Note that
the corrections achieved by model selection still cannot cover
the opposite cases such as american idol where the popular-
ity suddenly drops.

On the D-W testbed, we used the daily frequencies in May
2011, and on the M-A testbed we used the monthly values
between 2009–2010 as our validation sets. The overall error

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

10
th

11
th

12
th

13
th

14
th

15
th

16
th

17
th

18
th

19
th

20
th

21
st

22
nd

23
rd

24
th

25
th

26
th

27
th

28
th

29
th

30
th

american idol

Fr
eq

ue
nc

y

0
10000
20000
30000
40000
50000 Actual

P1
TS

1s
t

2n
d

3r
d

4t
h

5t
h

6t
h

7t
h

8t
h

9t
h

10
th

11
th

12
th

13
th

14
th

15
th

16
th

17
th

18
th

19
th

20
th

21
st

22
nd

23
rd

24
th

25
th

26
th

27
th

28
th

29
th

30
th

ginger lee

Fr
eq

ue
nc

y

0
20000
40000
60000
80000 Actual

P1
TS

Figure 8: (Top) The actual daily frequencies and the
predicted values by P1 (MAE ≈ 0.08) and TS (MAE
≈ 0.81) for query american idol in June 2011. (Bot-
tom) Same data for query ginger lee by P1 (SMAPE
≈ 0.26), and TS (SMAPE ≈ 0.40). P1 reacts to quick
changes of popularity more effectively.

rates obtained by TMS on these testbeds can be respectively
found in Tables 1 and 2. On the M-A testbed, temporal se-
lection boosts both metrics. On the D-W testbed TMS leads
to further improvements in MAE but it negatively affects
SMAPE. The daily and monthly error rates in Figures 5
and 6 are consistent with the overall numbers.

In summary, our experiments suggest that despite the
common assumption, aggregated query frequencies may not
provide a good proxy for future popularity. Although aggre-
gation based on fresher data is generally more effective, it
still fails to predict the popularity of periodic queries. Our
forecasts based on time-series analysis, and temporal model
selection consistently outperform the aggregated baselines
on both testbeds. In the next section, we show how improve-
ments in forecast accuracy leads to better QAC ranking.

7. TIME-SENSITIVE QAC RANKING
We pick P1 as the best aggregated model to form the best

case for MostPopularCompletion (MCP) [2] baseline in our
QAC experiments. At each time t (day/month), we rank the
QAC candidates according to their frequency at time t − 1
and compare them against the oracle ranking generated by
the true frequency values at time t. We also use the forecasts
produced by the TS and TMS models to generate two time-
sensitive QAC rankings for each query.

QAC Candidates. We extract the QAC prefixes and can-
didates from the same query log described in Section 4. For
each prefix P at time t, we match all the queries that start
with P and rank them according to their true frequency
at time t to generate the ground-truth ranking. We filter
out all prefixes that have fewer than 3 characters, and those
that have less than 5 candidates. For each forecast method
at time t, we rank the top-20 ground-truth candidates based
on the data available at time t−1 and before. Those ground-
truth candidates that are observed for the first time in the
logs at time t and did not exist before are omitted.

Results. Table 4 contains the evaluation results for ranking
QAC candidates based on different prediction models. On
the D-W testbed 30 rankings are generated for each pre-
fix, one for each day in June 2011. Similarly, on the M-A
testbed, each prefix is used to generate 6 QAC rankings, one
for each month during January–June 2011. The numbers in
the table are averaged across all queries and over the en-
tire testing period. All pairwise differences are detected as
statistically significant for both evaluation metrics.

The MRR and Spearman (ρ) results in Table 4 closely
follow patterns to observed for SMAPE error rates in our
previous experiments. On the D-W testbed in Table 5 we
saw that TS had lower error rates than TMS and they both
produced significantly more accurate predictions compared
to P1. The same can be observed when comparing the QAC
lists generated based on their forecast values. TS has the
edge over TMS while P1 performs significantly poorer than
both. Similarly, the SMAPE numbers in Table 6 suggested
that TMS produces the most accurate forecasts on the M-
A testbed. Here the results in Table 4 confirm that indeed
these more accurate forecasts lead to higher quality QAC
rankings.

We also computed the Pearson coefficient (r) between the
average forecast error rates of the top five QAC suggestions
and the final ρ and MRR values computed for those rank-
ings. As expected, the Pearson coefficient suggests a nega-
tive correlation between the quality of QAC rankings and the
average forecast errors of the top five candidates (r ≈ −0.17
for SMAPE-Spearman and r ≈ −0.21 for SMAPE-MRR).

Once again, time-series modeling is a key factor for bet-
ter QAC ranking. Time-sensitive models such as TS and
TMS are able to choose between big east conference and
big east tournament, or between when to plant tulips and
when to plant tomatoes depending on the time of query, while
methods based on aggregated data constantly fall behind.

8. CONCLUSIONS
We proposed a new time-sensitive query auto-completion

model in which the ranking of query suggestions varies ac-
cording to their predicted popularity at the time of query.

Table 4: The effectiveness of QAC rankings pro-
duced according to different forecast models on the
D-W (left) and M-A (right) testbeds. The best per-
forming method in each experiment is specified by
an underline. All pairwise differences are detected
as statistically significant by the t-test (p < 0.01).

D-W Testbed M-A Testbed
Spearman (ρ) MRR Spearman (ρ) MRR

MCP(P1) 0.569 0.763 0.607 0.867
MCP(TS) 0.623 0.803 0.597 0.868
MCP(TMS) 0.611 0.796 0.618 0.873

We leveraged time-series techniques to predict the query
popularity and showed that such methods consistently out-
perform different baselines that use aggregated data. We
also demonstrated that predictions based on aggregated fre-
quency over a long period are usually worse than those made
on smaller but more recent data. Finally, we showed that us-
ing more accurate query popularity predictions produced by
time-series modeling leads to higher quality auto-completion
query suggestions.

As feature work, a mixture model produced by fitting sev-
eral time-series models simultaneously (with different values
of τ) may improve the quality of predictions. Last but not
least, similar analysis can be done for different levels of gran-
ularity such as hourly intervals.

9. REFERENCES
[1] E. Alfonseca, M. Ciaramita, and K. Hall. Gazpacho

and summer rash: lexical relationships from temporal
patterns of web search queries. In Proc. Conf.
Empirical Methods in NLP, pages 1046–1055,
Singapore, 2009.

[2] Z. Bar-Yossef and N. Kraus. Context-sensitive query
auto-completion. In Proc. WWW, pages 107–116,
Hyderabad, India, 2011.

[3] R. Baraglia, F. M. Nardini, C. Castillo, R. Perego,
D. Donato, and F. Silvestri. The effects of time on
query flow graph-based models for query suggestion.
In Proc. RIAO, pages 182–189, Paris, France, 2010.

[4] S. M. Beitzel, E. C. Jensen, A. Chowdhury,
D. Grossman, and O. Frieder. Hourly analysis of a
very large topically categorized web query log. In
Proc. SIGIR, pages 321–328, Sheffield, United
Kingdom, 2004.

[5] K. Berberich, S. Bedathur, O. Alonso, and
G. Weikum. A language modeling approach for
temporal information needs. In Proc. ECIR, pages
13–25, Milton Keynes, UK, 2010.

[6] S. Bickel, P. Haider, and T. Scheffer. Learning to
complete sentences. In Proc. ECML, pages 497–504.
2005.

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
Mar. 2003.

[8] S. Chaudhuri and R. Kaushik. Extending
autocompletion to tolerate errors. In Proc. SIGMOD,
pages 707–718, Providence, Rhode Island, USA, 2009.

[9] S. Chien and N. Immorlica. Semantic similarity
between search engine queries using temporal
correlation. In Proc. WWW, pages 2–11, Chiba,
Japan, 2005.

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

charlie sheen

Fr
eq

ue
nc

y

0e+00
2e+05
4e+05
6e+05
8e+05
1e+06

Actual P1 TS

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju
n

royal wedding

0
200000
400000
600000
800000

1000000
1200000 Actual P1 TS

Figure 10: (left) The actual daily frequencies and the predicted values by P1 (SMAPE ≈ 0.51) and TS (SMAPE
≈ 0.60) for query charlie sheen between Jan–Jun 2011. (right) Same data for query royal wedding by P1 (MAE
≈ 0.58), and TS (SMAPE ≈ 0.59). P1 reacts to quick changes of popularity more effectively.

[10] H. Cho and H. Varian. Predicting the present with
google trends. Technical report, Google Inc, April
2009.

[11] N. Dai and B. D. Davison. Freshness matters: in
flowers, food, and web authority. In Proc. SIGIR,
pages 114–121, Geneva, Switzerland, 2010.

[12] N. Dai, M. Shokouhi, and B. D. Davison. Learning to
rank for freshness and relevance. In Proc. SIGIR,
pages 95–104, Beijing, China, 2011.

[13] J. J. Darragh, I. H. Witten, and M. L. James. The
reactive keyboard: A predictive typing aid. Computer,
23:41–49, November 1990.

[14] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz,
Y. Chang, Z. Zheng, and H. Zha. Time is of the
essence: improving recency ranking using twitter data.
In Proc. WWW, pages 331–340, Raleigh, North
Carolina, USA, 2010.

[15] M. Efron. Linear time series models for term
weighting in information retrieval. J. Am. Soc. Inf.
Sci. Technol., 61, July 2010.

[16] J. L. Elsas and S. T. Dumais. Leveraging temporal
dynamics of document content in relevance ranking. In
Proc. WSDM, 2010.

[17] J. Fan, H. Wu, G. Li, and L. Zhou. Suggesting
topic-based query terms as you type. In Proc.
APWEB, pages 61–67, Washington, DC, 2010.

[18] K. Grabski and T. Scheffer. Sentence completion. In
Proc. SIGIR, pages 433–439, Sheffield, United
Kingdom, 2004.

[19] C. C. Holt. Forecasting seasonals and trends by
exponentially weighted moving averages. International
Journal of Forecasting, 20(1):5–10, 2004.

[20] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive
fuzzy keyword search. In Proc. WWW, pages 371–380,
Madrid, Spain, 2009.

[21] R. Jones and F. Diaz. Temporal profiles of queries.
ACM Trans. Inf. Syst., 25, July 2007.

[22] N. Kanhabua and K. Nørv̊ag. Determining time of
queries for re-ranking search results. In Proc. ECDL,
2010.

[23] A. Kulkarni, J. Teevan, K. M. Svore, and S. T.
Dumais. Understanding temporal query dynamics. In
Proc. WSDM, pages 167–176, Hong Kong, China,
2011.

[24] X. Li and W. B. Croft. Time-based language models.
In cikm, pages 469–475, 2003.

[25] N. Liu, J. Yan, S. Yan, W. Fan, and Z. Chen. Web
query prediction by unifying model. In Proc. IEEE
Int. Conf. Data Mining Workshops, pages 436–441,
Washington, DC, USA, 2008.

[26] D. Metzler, R. Jones, F. Peng, and R. Zhang.
Improving search relevance for implicitly temporal
queries. In Proc. SIGIR, pages 700–701, Boston, MA,
USA, 2009.

[27] A. Nandi and H. V. Jagadish. Effective phrase
prediction. In Proc. VLDB, pages 219–230, Vienna,
Austria, 2007.

[28] P. L. R. Byrd and J. Nocedal. SIAM Journal on
Scientific and Statistical Computing, 16(5):1190–1208,
1995.

[29] K. Radinsky, K. M. Svore, J. Teevan, S. T. Dumais,
A. Bocharov, and E. Horvitz. Learning and predicting
behavioral dynamics on the web. In Proc. of WWW,
pages to–appear, 2011.

[30] Y. Shimshoni, N. Efron, and Y. Matias. On the
predictability of search trends. Technical report,
Google Inc, August 2009.

[31] M. Shokouhi. Detecting seasonal queries by time-series
analysis. In Proc. SIGIR, pages 1171–1172, Beijing,
China, 2011.

[32] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos.
Identifying similarities, periodicities and bursts for
online search queries. pages 131–142, Paris, France,
2004.

[33] R. W. White and G. Marchionini. Examining the
effectiveness of real-time query expansion. Inf.
Process. Manage., 43:685–704, May 2007.

[34] R. Zhang, Y. Chang, Z. Zheng, D. Metzler, and J.-y.
Nie. Search result re-ranking by feedback control
adjustment for time-sensitive query. In Proc.
NAACL-Short, pages 165–168, Boulder, Colorado,
2009. Association for Computational Linguistics.

