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ABSTRACT

Obtaining judgments from human raters is a vital part in the design
of search engines’ evaluation. Today, a discrepancy exists between
judgment acquisition from raters (training phase) and use of the
responses for retrieval evaluation (evaluation phase). This discrep-
ancy is due to the inconsistency between the representation of the
information in both phases. During training, raters are requested
to provide a relevance score for an individual result in the context
of a query, whereas the evaluation is performed on ordered lists
of search results, with the results’ relative position (compared to
other results) taken into account. As an alternative to the practice
of learning to rank using relevance judgments for individual search
results, more and more focus has recently been diverted to the the-
ory and practice of learning from answers to combinatorial ques-
tions about sets of search results. That is, users, during training,
are asked to rank small sets (typically pairs).

Human rater responses to questions about the relevance of in-
dividual results are first compared to their responses to questions
about the relevance of pairs of results. We empirically show that
neither type of response can be deduced from the other, and that the
added context created when results are shown together changes the
raters’ evaluation process. Since pairwise judgments are directly
related to ranking, we conclude they are more accurate for that pur-
pose. We go beyond pairs to show that triplets do not contain sig-
nificantly more information than pairs for the purpose of measur-
ing statistical preference. These two results establish good stability
properties of pairwise comparisons for the purpose of learning to
rank. We further analyze different scenarios, in which results of
varying quality are added as “decoys”.

A recurring source of worry in papers focusing on pairwise com-
parison is the quadratic number of pairs in a set of results. Which
preferences do we choose to solicit from paid raters? Can we prov-
ably eliminate a quadratic cost? We employ results from statisti-
cal learning theory to show that the quadratic cost can be provably
eliminated in certain cases. More precisely, we show that in order
to obtain a ranking in which each element is an average of O(n/C)
positions away from its position in the optimal ranking, one needs
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to sample O(nC?) pairs uniformly at random, for any C' > 0. We
also present an active learning algorithm which samples the pairs
adaptively, and conjecture that it provides additional improvement.
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1. INTRODUCTION

Evaluation and training are essential to information retrieval (IR).
Training refers to the process of obtaining feedback in order to train
and improve the system. This feedback is obtained either explicitly,
by asking people to provide it, or implicitly, by analyzing search
engine traffic logs. In this work we refer only to explicit training.
Evaluation refers to the process of measuring the goodness of the
system. Up until now, most of the IR literature has evolved around
systems in which a systematic discrepancy exists between the train-
ing and the evaluation methods, which we explain here briefly. In
training, raters are asked, given a query and a search result, to pro-
vide a graded relevance score for the result in the context of the
query (see survey [32]). In evaluation, the quality of a set of or-
dered search results for a test query is scored using one of a family
of metrics: AP (Average Precision), DCG [22] and NDCG (normal-
ized DCG), RBP (Ranked Bias Precision) [28], MMR (Maximum
Marginal Relevance) [9], ERR (Expected Reciprocal Rank) [12]).
All of these metrics favor orderings which place higher relevance
test results in preferable positions, compared to lower relevance test
results. | Because the metrics take into account relative relevance
of results in an ordered list, the problem has become known as the
ranking problem for information retrieval.

The discrepancy implied above is due to the inconsistency be-
tween the representation of the information in the training system
and in the evaluation phase. In the training system, the basic token
of information is relevance judgment on individual search results,
whereas the evaluation is on ordered lists of search results, where
the results relative position is taken into account. The ability of
these metrics to measure the true goodness of a retrieval system

'The lists of results are always with respect to the same query.
Evaluations are summed up over the different queries.



[12, 27] is debatable. From the theoretical aspect, directly applying
optimization techniques to maximize these metrics is computation-
ally difficult [36].

As an alternative to the practice of learning to rank using rele-
vance judgments for individual search results, more and more fo-
cus has recently been diverted to the theory and practice of learning
from answers to combinatorial questions about sets of search re-
sults. More precisely, given a set of n items to rank (search results
for the same query), subsets of size k are chosen from the set of
all subsets. In the typical case of pairwise preference information,
k equals 2. In the case of k = n, this idea has become known as
the listwise approach [35, 26, 8]. The raters are asked a combina-
torial question related to the correct order of the subset. Possible
questions are, Which is the best result in the tuple? and What is
the correct way to order the results in decreasing relevance order?
Roughly speaking, the system trains a model for predicting the hu-
man responses. In evaluation, it is no longer possible to use the IR
measures mentioned before, because the raters did not provide us
with graded relevance scores. Given a query and an unordered set
of search results, the evaluation score should measure the extent to
which the tuples match the predicted human response.

In this work, we discuss the following questions arising from the
aforementioned combinatorial approach.

e Information. Does human response to comparative com-
binatorial questions on k-sets contain information that dif-
fers from that contained in relevance score responses? Does
the information contained in responses to sets of size k = 2
(pairs) subsume information coming from higher k?

o Query Complexity.” Which subsets do we choose from the
possible (:) to send to raters in training? Do we need to send

all Q(n*) possibilities?

e Evaluation. How do we evaluate an ordering of search re-
sults in testing?

o Computational Complexity. How do we find the best or-
dering with respect to this evaluation function?

This work mainly tackles the questions of information, query
complexity, and evaluation:

e Information. We show in Section 3 that, for the purpose
of ranking, pairwise preference judgments contain more ac-
curate information than relevance scores on individual re-
sults. In fact, we show that relevance judgments do not sat-
isfy independence and consistency, two natural requirements
assumed in all Cranfield experiments [32]. We go beyond
pairs to show that the marginal preference information for
pairs within a triplet does not differ much from the informa-
tion obtained from the pair when presented alone. These two
results indicate the stability of pairwise information within
higher order tuples. To the best of our knowledge, this is the
first time this kind of study has been performed.

e Query Complexity. In Section 4 we analyze a standard eval-
uation function running over all (’;) pairs. The quadratic
dependence of the score in the size of the input should not
scare practitioners. We employ results from statistical learn-
ing theory to show that the quadratic cost can be provably

The term query is overloaded in this work. It means (1) a request
for information from an IR system, and (2) soliciting a preference
response from a human rater. The combination query complexity
always refers to the latter interpretation.

eliminated in certain cases. More precisely, we show that in
order to obtain a ranking in which each element is an average
of O(n/C) positions away from its position in the optimal
ranking, one needs to sample O (nC?) pairs uniformly at ran-
dom, for any C' > 0. We also present an active learning al-
gorithm which samples the pairs adaptively, and conjecture
that it provides additional improvement in the query com-
plexity. We also discuss a variant of the cost function that
favors top results, in the spirit of, e.g., [31] and the wpref
evaluation function from [7, 11].

e Evaluation. Our goal here is not to claim that one objective
function is better than the other for the purpose of comparing
IR systems - we leave this to other empirical studies. We do
claim that there should be a match between the manner in
which information is fed into the system (e.g. individual rel-
evance scores, pairwise preference or 5-tuple full rankings)
and the manner in which it is evaluated. This is not only intu-
itive, but also allows us to use tools from statistical learning
theory in order to bound the regret incurred from subsam-
pling the information, in an attempt to escape quadratic (in
the pairwise case) or higher degree polynomial (for larger
sets) complexity.® We choose a ranking evaluation function
with a quadratic number of summands (as a function of re-
sults retrieved for a query) to show how the analysis can be
done.

2. BACKGROUND AND MOTIVATION

2.1 Drawing from Econometric Theory

The question of relevance level of search results can be com-
pared to the econometric approach of assigning utility to goods.
Using responses to the question which is the best result? to build
a retrieval system can be compared to the econometric study of
discrete choice for predicting consumer behavior [34]. A typical
approach in the latter theory is the random utility model, in which
one posits that a discrete choice is equivalent to the process of se-
lecting the maximum coordinate from a random vector of alterna-
tive utilities. Analogously, many papers in the IR ranking literature
try to model ranking by inducing it from a machine learned utility
function, but few papers use human stated choice as their source of
information.* Instead, they (e.g., [35, 8, 20]) may induce choice
or preference information from relevance responses to individual
results, which are merely a form of a latent score or perceived util-
ity (albeit quantized to fit some graded scale). The net result is a
learning system using scores both for learning and for modeling.
Why, in that case, go via ranking? We find this to be a questionable
detour, which we refer to in what follows as the IR ranking detour
(Figure 1). One of the results in this paper shows that relevance
responses from raters contains information that differs from their
stated preference. The IR detour hence adds noise. Additionally, a
result by Ailon [1] illustrates that given relevance responses, a re-
gression algorithm predicting the relevance directly does at least as
well as ranking algorithms, including the aforementioned listwise
algorithms.

3By regret we mean the additional cost we pay compared to the op-
timal solution to the utility function given all (quadratically much)
pairwise preference information.

*A noteworthy exception is Joachim’s work [23] in which click-
through data is used as expression of discrete choice from a set,
although this, in econometric language, is revealed choice and not
stated choice, which we study here.
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Figure 1: The IR detour is represented by (a)+(b) in the draw-
ing, where (c) represents a direct approach (e.g., risk minimiza-
tion in ordinal classification or regression). Econometric theory
of discrete choice is represented in (d). Process (e) represents
the first of a two stage approach: machine learning to predict
preferences, followed by combinatorial optimization for rank-
ing (not drawn).

We present in this work an empirical study quantifying some
problematic aspects of the IR Detour.

2.2 Avoiding the Detour

There are two obvious direct schemes that avoid the detour, both
of which call for new IR evaluation metrics. One scheme, illus-
trated in arrow (c) in Figure 1, is to treat the problem as an ordi-
nal classification problem, and solve it using ordinal regression or
structural risk minimization, as done in, e.g., [17, 1]. The second
alternative (arrow (e) in the figure) is the combinatorial approach
mentioned in the introduction, in which the system is trained and
evaluated against rater responses to combinatorial questions involv-
ing sets of size k.

Li and Cao et al. [35, 8, 20] use the combinatorial listwise ap-
proach with £ = n. In other words, raters provide a full ranking of
search results for a query. This can be a daunting task for humans,
especially if the number of results is large [29]. In their real data
experiments, in fact, the authors take the IR detour. That is, users
are requested to give relevance judgments to individual results for
each query, and a ranking is induced from these results.

In this work we study an approach which avoids the IR detour.
Pairwise preference judgments (corresponding to k = 2) are an al-
ternative receiving much attention [2, 5, 15, 21]. Already for this
value of k, the questions of information, query complexity, evalua-
tion and computational complexity complicate matters. The ques-
tion of query complexity was raised in, e.g., [17] as a reason to
avoid the approach, while others [11, 18] offer interesting heuris-
tics for dealing with it. In this study, we initiate a rigorous analy-
sis to solve this problem, which to the best of our knowledge has
not been done before. We prove a theoretical statistical learning
bound, from which one can derive a sub-quadratic query complex-
ity algorithm in certain cases. We conjecture that an active learn-
ing approach which we present as an adaptive sampling algorithm
does even better. The underlying evaluation function optimized in
our algorithm is chosen to be a simple cost function running over
all pairwise inconsistencies of an output ranking of items (search
results). This function is tightly connected with bpref and wpref
defined in [7, 11], and a similar analysis could be done for those
functions as well. In spite of its quadratic nature, we conjecture
that an algorithm outlined in Figure 5 which adaptively samples
only O(n polylogn) pairs returns a result with negligible regret
compared to the optimum. This algorithm is based on a recent
PTAS for a similar problem by Kenyon-Mathieu et. al [24].° From

A PTAS is shorthant for Polynomial-Time Approximation

a computational point of view, a black box for solving the NP-hard
problem of minimum feedback arc-set is required in the algorithm
of Figure 5. We do not address this black box in the paper. We con-
centrate on query complexity only. We refer the readers to known
fast heuristics (such as [16]) and to work on optimizing the problem
in the stochastic settings [6].

Carterette et al. [11] empirically show that assessors tend to
agree more and spend less time per judgment when asked pref-
erence judgments of the form “document A is more relevant than
document B.” In our work we also compare statistical differences
between both type of responses. Additionally, we study cases in
which assessors are asked to provide two relevance scores for a
pair of results simultaneously (as opposed to soliciting the scores
separately from distinct raters). We check whether the marginal
distribution of the individual scores fits the distribution obtained
by asking for scores separately. In order to simulate the first step
in the IR detour (Figure 1), we also check whether the preference
distribution induced by responses to separate questions fits the dis-
tribution obtained when directly asking for preference. We then go
beyond the pairwise setting and study triplets of results, to see how
the additional context affects the induced statistical preference for
the two other results. We study different types of context, including
pseudo-results obtained by obfuscating other results.

3. EXPERIMENTAL EVALUATION

We perform numerous experiments on human subjects to check
whether for the purpose of ranking, information obtained from re-
sult pairs is substantially different from that obtained from single
results for a query. Furthermore, we check whether information
from triplets differs from that of pairs. In our experiments, we ask
human raters to respond to both relevance questions (correspond-
ing to individual search results) and comparative questions (corre-
sponding to sets of 2 or 3 results for the same query). The sample
we choose to present is extracted from a comprehensive variety of
results retrieved from commercial search engines, from both high
and low positions.

3.1 Evaluation Procedure

Experiments are performed using 50 queries obtained from the
TREC Web Track [13]. For each query, we obtained results from
Google’s search engine. We refer to several types of results in our
experiments:

1. Given a query ¢, a result r is defined as a Low Result, de-
noted r € Low, if it is retrieved at position 200 or worse
by Google’s search engine given query g. For each query we
sample 10 Low results.

2. Given a query g, a result r is considered to be a High Result,
denoted r € High, if it is retrieved at position 10 or better
by Google. For each query we sample 10 High results.

3. Aresultr’ = Obf(r) is defined to be an Obfuscated Version
of a result r if it is obtained from 7 by introducing gram-
mar and syntax errors. Here we obfuscate by translating the
snippet of result r to Italian and then back to English using
the “Google translate service”, taking advantage of imperfec-
tions in current state-of-the-art automatic translation technol-

67
ogy.
Scheme: An algorithm which returns a solution of cost at most
(1 + €) that of an optimal solution.
6http://translate.google‘com

"By snippet we mean a short summary of a retrieved page presented
to the user before navigation to the actual page.




Experiments were conducted using Amazon Mechanical Turk,
an emerging utility for performing user study evaluations [25].8
Each question in our study is incarnated as 10-30 tasks. In our
terminology, one task refers to routing a question to a (paid, ran-
dom, online) user and obtaining an answer. Tasks are structured
using one of 5 templates (see below). The templates share a com-
mon structure, consisting of a query ¢ and a set of results, which
is either a singleton, a pair, or a triplet. Templates are further sub-
divided into relevance and preference types. The relevance type
template solicits a relevance score in a 5-grade scale for each one
of the results in the corresponding set. > The preference type tem-
plate (for pairs and triplets only) asks for identification of the best
result. We summarize the 5 template types. For a query q:

1. (single-relevance) Assign a relevance grade to r.

2. (pairwise-relevance) Assign a relevance grade to r1,12.
3. (pairwise-preference) Mark the better result from r1, 2.
4. (triplet-relevance) Assign a relevance grade to r1,72, 3.
5. (triplet-preference) Mark the best result among r1,12,73.

"To avoid bias towards a certain preference due to the position of
the results in the template, we created tasks that permute pairs and
triplets in all possible ways.

3.2 Results and Analysis

Our main statistical tool is Cochran-Mantel-Haenszel’s (CMH)
[14] repeated tests of independence. The test computes a statistic
on a list of 2 X 2 integer matrices, used for accepting or rejecting
the null hypothesis of independence between the row and column
variables in all matrices. If the 7’th histogram is defined as

a; bz
C; dl
and n; = a; + b; + ¢; + d;, the statistic is given as

a;+b;)(a;+c;
o A1 — ttdleted | o5 il
X = Z (a;+bi)(aiteci)(bi+di)(ci+d;) G.D

(nf—n3)

The subtracted 0.5 is Yate’s correction. The significance of reject-
ing the null hypothesis is given by a p-value corresponding to the
the x? distribution (with 1 degree of freedom).

In our statistical analysis, we apply CMH to two types of his-
tograms: Relevance Histograms and Preference Histograms.

Relevance Histograms: Each histogram corresponds to a result
r for a query g. The rows correspond to tasks from two different
templates. The columns correspond to a binary partitions of the
possible relevance scores {1,2, 3,4, 5}. For example, we may as-
sign {1, 2, 3} to the first column and {4, 5} to the second. Each
cell counts how many times raters gave a relevance score contained
in the set corresponding to the column, in the template correspond-
ing to the row. For example, if the top row corresponds to single-
relevance and the left column corresponds to {1,2,3}, then the
top-left cell in the histogram counts how many times raters judged
result r with a relevance score of either 1, 2 or 3 within a task for-
mulated in the single-relevance template. For pairwise-relevance
or triple-relevance templates, the relevance scores to the other one
or two results are ignored (we take the marginal for r).

8https://www.mturk.com

The template instructions define the scale grades as highly irrel-
evant(1), irrelevant, marginally relevant, relevant and highly rele-
vant(5).

Preference Histograms: Each histogram corresponds to a pair
of results r; and 7 for the same query q. The columns correspond
to comparison counts (how many times r; was preferred over r2
versus how many times r2 was preferred over 71). The rows cor-
respond to different templates which were used for obtaining these
preferences. For a template of type single-relevance, the count is
obtained as follows. Let h; denote the histogram of the 5-grade rel-
evance score given to result r; for i = 1,2. More precisely, h;(j)
is the number of raters assigning relevance j for result ¢, where
j =1,...,5. We use the histograms to infer preference counts as
follows. For i € {1,2} let ¢ denote 3 — i (the alternative index).
If N; denotes the inferred number of times that r; is preferred over
the alternative r;, then NNV; is given as

5

No= 3 (i)l

j=2j/=1

We call (N1, N2) the fie-ignoring count. We also define an alterna-
tive counting method, called tie-splitting which divides ties equally
among both alternatives, as in [11]. We denote this inferred count
by N and compute it as follows:

5
< 1 . .
Ni=Ni+ 3 ;:1 hi(5)hi(5) -

The counting method for single-relevance corresponds to the ran-
dom utility model in discrete choice theory, in which preference is
given by comparing two independent random utilities and choosing
the best.

For pairwise-relevance templates, let /(j1, j2) denote the num-
ber of tasks for which r; received a relevance score of j; for ¢ =
1, 2. The definitions of the tie-ignoring and the tie-splitting counts
are clear:

5
Ni=>"
Jj1=2

For pairwise-preference templates, the counts are simply read from
the task responses (no ties appear in the templates). For triplet-
relevance templates, the relevance of the additional result r3 is
ignored (it is used only to create additional context). For triplet-
preference templates, we ignore the cases in which the context cre-
ator r3 was chosen as best.

Each histogram contains one template in the first row and another
in the second row. The first experiment in Section 3.3 compares
single-relevance task responses to those of pair-relevance. The
second, in Section 3.4, compares pairwise-preference to triplet-
preference. The third, in Section 3.5, compares pairwise-relevance
with pairwise-preference. The experiment in Section 3.6 compares
two triplet-preference scenarios, one with the context result r3 sat-
isfying 73 € High, and the other with 73 € Low. We per-
form a similar test for triplet-relevance. Finally, the experiment in
Section 3.7 compares pairwise-preference with triplet-preference,
where the contexts result r3 is given as Obf(r1). A similar test is
conducted for pairwise-relevance vs. triplet-relevance.

Jj1—

N | =

1 5
h(jir )y No=Ni+ 5> h(j,§). (B2
1 j=1

Jj2=

3.3 Are Single-Relevance Responses Stable for
Ranking?

In classic IR training design (e.g., TREC [13]), results are evalu-
ated by raters without any context: A result is shown to the human
evaluator as a singleton. This approach was simulated with our
single-relevance template. In the IR ranking literature [11, 10] there
is much debate around whether preference or relevance judgments
should be requested from evaluators. Indeed, singleton relevance



responses are believed to be inaccurate, and subject to individual
interpretation of the graded scale.

We first applied CMH over 100 relevance histograms, two his-
tograms corresponding to two possible High results r for each
one of 50 queries ¢. The first row in each histogram counted rele-
vance from single-relevance template task responses, and the sec-
ond row counted relevance from pairwise-relevance template task
responses. We used the partition {1, 2,3} U{4, 5} for the columns.
We used 20 tasks for each r, g and for each of the two templates.
The resulting p-value was 0.05. We then ran the same test with two
Low results instead. We used the partition {1,2} U {3,4,5} for
this case (this was done because Low results generate too few re-
sponses of 4, 5). We computed a p-value of 0.007. We therefore re-
ject the null hypothesis, and conclude that marginal perceived rele-
vance distribution of results in pairwise-relevance responses differs
from the perceived relevance distribution from single-relevance re-
sponses. This means that added context affects relevance percep-
tion.

One might argue that this still shouldn’t discourage us from using
single-relevance responses for IR ranking. Indeed, maybe the pref-
erence relation induced from relevance responses is stable across
single-relevance and pairwise-relevance responses. We test this hy-
pothesis using preference histograms. Consider the case in which
we wish to determine the ordering of two results 71, r2 for query
q. Comparing single-relevance template task responses with pair-
wise template responses will indicate whether the classic IR human
judgment approach is equivalent, for the purpose of ranking these
two results, to an approach which presents each one of the two re-
sults as context for the other.

For each one of 50 queries we chose 4 results, 2 High results
and 2 Low results. For each single result we had 10 single-relevance
template task responses. The two high results were then paired , as
were the two low results; high and low results were not mixed.
Each pair was sent to 10 pairwise-relevance template tasks and to
10 pairwise-preference tasks.

We computed CMH for both High — High and Low — Low
pairings over the corresponding 50 histograms, using tie-ignoring
counts. For both cases, the results provide strong evidence rejecting
the null hypothesis, with p-value of 0.02. This means that we reject
the assumption of independence.

These results in fact imply that the validity of taking the IR de-
tour is questionable. Indeed, the random ordering induced by sep-
arately and independently drawing relevance scores for the two re-
sults from a population of raters is not the same as the random
ordering induced by drawing both relevance scores simultaneously
in the same task.

3.4 How much context do we need?

In the previous section, we saw that for the purpose of ranking
two results, when showing an evaluator a result without context to
which the evaluator can compare the result to, the ranking of a pair
of results changes substantially. We now explore whether adding
a context result as a “decoy” affects the induced preference for the
pair.

We computed CMH over histograms built from 50 queries, with
2 High results r1, r2 chosen for each query. We ran the experiment
four times, once for each possible combination of the following
criteria:

e r3 € High /r3 € Low

e Histogram from pairwise-relevance vs triplet-relevance tasks

/ Histogram from pairwise-preference vs triplet-preference
tasks. '

We adopted tie-ignoring in all tests.

Table 1: From Pairs to Triplets

Results Type | pairwise-relevance | pairwise-preference
vs. triplet-relevance | vs. triplet-preference
(p-value) (p-value)
r3 € High 0.20 0.70
r3 € Low 0.9 0.23

The results (Table 1) suggest that relevance and preference judg-
ments of High result pairs do not differ substantially from result
triplets obtained by adding a context of either High or Low type.
However, the relevance and preference judgments for triplets with
H1igh added context are different from those judgments for triplets
with Low added context; see Section 3.6.

3.5 Is Relevance the same as Preference?

In this section we wish to check whether as a result of the con-
clusion from Section 3.3 we should completely abandon relevance
scores. To that end, we run CMH on histograms comparing pairwise-
relevance vs pairwise-preference on 50 queries. In one experi-
ment, we pair High results with High results, and in another
we pair Low with Low. The preference count is done in a tie-
ignoring manner for the pairwise-relevance task responses (this is
obvious, because pairwise-preference template does not allow tied
responses). Both tests returned a p-value in the range [0.45, 0.47]
indicating that the null hypothesis should not be rejected. This
means that relevance scores, when provided in mutual context, prob-
ably do not contradict binary preference responses.

3.6 Different Context Types

The use of the term context in our work is analogous to the use of
anchoring in a famous behavioral economics experiment by Ariely
[4]. In his experiment, users were asked to choose an amount of
money to gamble on. Before the game began, some users were ex-
posed to big numbers, and others to small numbers. For example,
subjects from the first group might be asked how many people live
in China, whereas the second group might be asked for the number
of Biblical commandments. The chosen gambling stake distribu-
tion for both groups significantly differed. Those exposed to bigger
numbers tended to gamble on larger sums.

In ranking evaluation, we wish to explore the same phenomenon.
Will the relevance of a pair result change in the context of an addi-
tional High context result as opposed to a Low one?

We computed CMH over 50 queries, where for each query we
chose a pair of High results r1, r2, and for each pair we added dif-
ferent types of context. In one task collection we added r3 € High
(see Figure 2) and in another we added 75 € Low (see Figure 3).
We used the triplet-relevance template for the tasks. We routed
each question to 30 raters, 5 for each possible permutation on 3 ob-
jects. Our 2 x 2 histogram for each query was obtained by placing
in one row the responses with r3, and placing in the other row the
results with r5. When employing tie-splitting, we obtain a p-value
of 0.04. When employing tie-ignoring, we obtain a p-value of 0.1.
We also ran the same experiment with triplet-preference templates
instead of triplet-relevance. We obtained a p-value of 0.1.

10Each pairwise question was routed to 10 tasks, 5 for each possible
order, and each triplet question was routed to 30 tasks, 5 for each
possible order.
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www.makemyfamilytree.com'.. /barack_obama_family_tree html

A Family Tree Rooted In American Soil: Michelle Obama Leams About Her Slave Ancestors, Herself and Her

Resultl relevance: Result2 relevance: Resultd relevance:
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0- highly irrelevant 0 - highly irrelevant 0 - highly irrelevant
C . C . C .
1 - irrelevant 1 - irrelevant 1 - irrelevant
[ . [ . i
2 - marginally relevant 2 - marginally relevant 2 - margnally relevant
[ [ &
3 -relevant 3 - relevant 3-relevant
[ [ e
4 - highly relevant 4 - highly relevant 4 - highly relevant

Figure 2: Results for the query “Obama family tree”. The first two results are a high results (r1,r2, 73 € High. The user is requested
to submit three relevance judgements, but we ignore the response for 3 because it is used as decoy here.

We consider these results as a weak rejection of the null hypoth-
esis. In other words, the type of added context creates a noticeable
but small difference for the purpose of comparing r1 with ra.

3.7 Using Obfuscated Results

Additional psychological experiments by Ariely [3] indicate that
when 2 out of 3 alternatives are easily comparable to each other
(but neither easily comparable to the third), people tend to go for
the better of those two. For example, in one experiment, one group
of people was presented with two options: vacation+breakfast in
country A vs. vacation+breakfast in B, both for the same price. In
the second group, people were faced, on top of those two alterna-
tives, with an additional option of vacation without breakfast in A
(for the same price). The results revealed a surprising stronger bias
toward vacation+breakfast in A within the second group, as op-
posed to the bias being equally distributed between the two choices
in the first group.

We tried to repeat this result by generating obfuscated results
which are easily comparable to (and less appealing than) their orig-
inal counterparts. An example can be seen in Figure 4.

As before, we computed CMH over 50 histograms correspond-
ing to 50 queries, with two results 71,72 € High chosen for
each query. One row of the histogram was taken from pairwise-
preference and the other from triplet-preference template tasks, with
73 taken as Obs(r1)."" The resulting p-value was 0.002. We thus

" As usual, we routed 10 tasks per query for pairwise, 5 for each
order, and 30 for the triplet, 5 for each possible order.

reject the null hypothesis, which stipulates that r3 does not affect
the preference distribution between 71 and 7. A close look at
the results revealed a counterintuitive phenomenon: Adding r3 =
Obs(r1), instead of creating a preference bias in favor of r1 (as
Ariely’s result would suggest), led raters to shy away from ;. We
conjecture that this is due to an impression of redundancy or maybe
even spamminess for r1, causing r2 to appear as a cleaner alterna-
tive. This phenomenon will be the subject of future research.

We also ran the same experiment, this time using pairwise-relevance
with triplet-relevance for the histograms. Employing tie-ignoring
resulted in p value of 0.9. Employing tie-splitting for the same test
resulted in 0.4. From this we conclude that relevance responses,
within sufficient context, are more stable than preference responses
when we care about induced preference only.

4. HOW MANY PAIRS, AND WHICH ONES?

In this section we dispel the fear of quadratic cost that is often
noted in papers on ranking, e.g., from [11]:  “Preferences have
some disadvantages, most notably the lack of defined evaluation
measures for preference judgments and the polynomial increase in
the number of preferences needed in a test collection”. The follow-
ing quote from from [17] is another example: “..the..approach is
time consuming since it requires increasing the sample size from n
to O(n?)”.

We show here that this problem can be dealt with using sam-
pling tools from statistical learning theory. Consider a set of items
V' of cardinality n. Think of V' as candidate search results for



Obama family tree

(in new window).

Resultl:

Friendfield Plantation.
www.chicagotribune.com s News » Chicagoland

Result2:

Using these gumidelines, help us evaluate the searchresults for the following query:

Rank howrelevant the searchresults and summaries are. You canclick on the link to view the content ofthe website

Michelle Obama's family tree hasrootsin a Carolina slave...
GEORGETOWN SC-Tiny wooden cabinsline the dirt road once known as Slave Street asit winds its way through

The Barack Obama Family - Barack Michelle Malia and Natasha

Robinson Obama inthis genealogy story ofthe ...

Result3:

Iz Obama the predicted Holy One?

where all men globally come from ...

Barack Obama family tree. Leam about the genealogy and family life of Barack Obama and his wife Michelle

www.makemyfamilytree com'.. ‘barack_obama_family_tree html

24 Oct 2008 ... In Africa the Obama family'sroots in the Kenya location called the "cradle of man" thelocation

www.prweb_com'releases/2008/10/prweb1 509974 him

Resultl relevance: Result2 relevance: Result3 relevance:
e - . - . . . .

0 - highly irrelevant 0 - highly irrelavant 0 - highly irrelevant
o ) « & 3
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3 - relevant 3 - relevant 3 - relevant
(. . ™ . i

4 - highly relevant 4 - highly relevant 4 - highly relevant

Figure 3: Results for the query “Obama family tree”, with 1, ro € High,r3 € Low. The user is requested to submit three relevance
judgements, but we ignore the response for r; because it is used as decoy here.

a query. Additionally, V' is equipped with an unknown matrix
{w(u,v)}u,vev, where w(u,v) measures the extent to which u
should be preferred over v. Assume here that w(u, v) + w(v,u) =
1 for all w,v € V. We wish to output a permutation 7 minimizing
the following loss:

vy
5 Z w(v,u) .

ulgv

u,veV

L(V,7) =

The notation © <, v means that u is preferred over v in 7. The
normalization (“2/‘) is chosen for convenience but is immaterial.
Other losses of a quadratic nature can be considered as well, but we
concentrate on this standard loss to demonstrate our analysis. We
are allowed to query w(u, v) for any u, v for a unit cost. This cost
should be thought of as the price we pay for soliciting pairwise pref-
erence from a small rater population sample. Alternatively, w(u, v)
may be “bought” by applying an expensive machine learned model
for determining our belief in predicting preference between v and
v, using features of u and v (as in the setting of [2, 5]). A ranking
algorithm, given V/, is allowed to query w at any chosen location
and output a permutation 7 on the elements of V. The queries may
be adaptive and depend on answers to previous queries. The goal
is to design a ranking algorithm ALG minimizing a cost which we
denote by L(V,w, ALG(V')). We define the query complexity of
ALG as the total cost paid for probing the matrix w. We are not in-
terested in computational complexity here. We are only interested
in the informational aspects of the problem.

We introduce the following useful notation. For any u,v € V,
and any permutation 7 of V', abuse notation by defining 7 (u,v) =
1if u < v and O otherwise (we view 7 as a {0, 1} vector of
n(n — 1) coordinates). For any pair u, v, let

Ly(V,w,m) = m(u,v)w(v,u) + 7 (v, u)w(u,v) .

The loss function L(V, w, 7) can now be rewritten as

—1
L(V,m) = |‘2/| S Luw(Viw,m).
uqf'u<€UV

(By v < v we mean that, formally, the pair u, v is unordered in
the sum). This notation suggests that the pairs u, v € V are drawn
from a uniform distribution over all pairs. The cost L(V, ) now
looks like a standard binary classification cost. Note that the con-
cept space of permutations on V', denoted S (V') (viewed as a subset
of {0,1}"(™=Y)_ is highly structured. In fact, it contains only n!
vectors. Summoning statistical learning theory, we are tempted to
declare the VC dimension of the space as log(n!) = O(nlogn).
(Recall that the VC dimension of a set of binary vectors is the
largest integer dy ¢ such that there exists a set of dy ¢ indices real-
izing all possible 29V assignments. Such a set of indices is said to
be shattered.) A careful analysis shows that the true VC dimension
is actually linear.

PROPOSITION 4.1. Let V' be a set of elements of size n. View-
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Result1:

Get Organized Now! - 10000+ Tips and Ideas

www.getorganizednow.com

Result2:

Using these guidelines, helpus evaluate the search results for the following query:

Select the link mostrelevant of the three links below. Your decision should be based on how relevant the search
results and summaries are. If vou wish vou can click on the link to view the content of the website (in new window).

Offers tools ideas and articles. Features monthly checklists a discussion forum e-courses and a newsletter.
Checklist - Forum - GetOrganizedNow - Organizing Challenges

FlvLadv.net: Your personal online coach to help vou gain confrol ...

www.flylady net

Result 3:

LIVING IN CHAOS? The FlyLadv's Simple FLYing Lessons Will Show You How to Get Your Home and Your
Life in Order--and Tt all Starts With Shining Your Sink!

FlyLadv.net: Your car online personal in order to helpit to earn control

vour life to itnell' order—-and all com
www_flylady net

Results relevance:

Result 1 is most relevant
Result 2 is most relevant

Result 3 is most relevant

LIVING IN THE CHAOS? The FlvLady' the simple lessons of flight of s will show like obtaining vour house and

Figure 4: An obfuscated version of the second result is presented third. The user is requested to submit preference judgment.

ing S(V') as an n(n — 1) dimensional space over {0, 1}, the VC
dimension of S(V') is .

PROOF. To see why the VC dimension cannot exceed n — 1, let
S’ be a set of n ordered distinct pairs of elements. We will show
that S cannot be shattered. Assume otherwise. We observe that,
in that case, S’ cannot contain both (u,v) and (v, u), because for
any m € Sp, m(u,v) =1 — m(v, u), hence not all possible combi-
nations can be assigned to the pair 7(u, v) and 7(v,u). Consider
therefore the undirected graph G = (V, E) with (u,v) € E if
and only if (u,v) € S’ or (v,u) € S’. By the last observation,
|E| = n. Hence it contains an undirected cycle which clearly can-
not be shattered. Indeed, an undirected cycle cannot by directed
cyclically by a permutation. To show that the VC dimension is
n — 1, it is enough to consider any directed spanning tree on G.
Indeed, no matter how we direct the edges, the graph can be topo-
logically sorted. [

Now let (%) denote the set of all unordered pairs of elements in

V. For a multi-set A C (‘2{) define the corresponding subsampled
loss function L 4(V, ) by

La(V,m) = |A|_1 Z Ly (V,w,m) .
(u,v)€A

(We are allowing A to be a multi-set so that we can obtain it by
sampling with repetitions.) Using standard sampling tools from sta-
tistical learning theory, and using our above VC dimension bound
in Proposition 4.1, we derive the following proposition:

PROPOSITION 4.2. Assume A is a sample of m pairs chosen
uniformly with repetitions from (‘2/) For any § > 0 with probabil-
ityl —9,

sup {La(Vyw,m) — LV, m)} =0 ()2 4/ 22810 )
TeS(V) m m

From this we conclude that for constant ¢ it suffices to take m =
O(n/e*) samples (with repetitions) for A in order to obtain (with
constant probability of success) a permutation 7 € S(V') with cost
L(V,w, ) which is at most £ worse (additively) than that of the
optimal 7*. This is done by algorithm ALG., which samples A as
above and optimizes L4 (V,-) as a surrogate for L(V,-). We say
that the regret of ALG. is e.

Is this the best we can do? First, let us see whether a regret of
O(e) is at all useful. Consider the case where the cost L(V, w, 7™)
of the optimal solution for V' is O(g) (otherwise the regret is same
order of magnitude as the cost of the optimal solution). It is easy to
show using a triangle inequality argument that in this case, dx (7, 7*)
is also O(e), where di is the Kendall-Tau distance between per-
mutations defined as:

-1
di(m, ") = " ZW*(vu).
K (T, 9 )

ugv

But this means that, on average, elements v € V are swapped
in 7 with an average of O(en) elements with respect to 7. More
precisely, if swap(u) denotes the set of elements v for which u and
v are ordered discordantly in 7 and in 7", then the average size of



Algorithm ALGL*°(V)

1. n<«|V|

2. ifn=0()

3. then return optimal solution for V' by exhaustive search
4. else 7 «+—ALG.(V)

5. k <uniformly random chosen integer in

[n/3,2n/3]

Vi <—{v € V : v among top-k in 7}

Vi +{v € V : v among bottom-(n — k) in 7}
wr <—ALGL*°(VL)

TR <—ALG§“(VR)

return concatenation of 7z, and mg

i~

—_ O

Figure 5: Ranking algorithm ALGZ*¢

swap(u) over allu € V is O(en). We can now use the well-known
inequality by Diaconis and Graham [19] relating the Kendall-Tau
distance to the Spearman-Footrule distance between permutations.
The result tells us that elements in V' are located in 7 an average
distance of approximately O(en) locations from their position in
w*. As a corollary, we get that in order to output a permutation
placing the elements at distance at most n/C' positions on average
with respect to their position in 7*, we need to sample O(nC?)

pairs.

4.1 Improving The Sample Complexity With
Active Learning

We would like to improve the above sampling scheme in order to
achieve a solution in which each element is dislocated (with respect
to the minimizer 7* of L(V, w, -)) by only a small (say, constant)
distance. From the above discussion, a sub-quadratic sample will
not be sufficient.

Intuitively, we should still be able to do better. After running
ALG: for some small € we should be fairly sure about pairs that
are further away from each other with respect to the returned so-
lution. We should therefore now sample pairs that are closer to
each other. To demonstrate our approach, consider the recursive
algorithm ALGL®¢ (Figure 5). The algorithm applies ALG. recur-
sively, randomly branching in a manner similar to that of Quick-
Sort. In the recursion, the algorithm concentrates on pairs that are
closer to each other.

Clearly, the query complexity of ALGZ“ is O(n polylog n), for
fixed e. We conjecture that ALGL®® is a ranking algorithm with a
regret that is better than that of ALG, given parameters ¢, ¢’ that
entail a similar query complexity for both algorithms. We were
unable to prove this conjecture in this work. We leave this conjec-
ture together with a related experimental study to future work. We
draw our conjecture from a recent seminal result by Schudy and
Kenyon [24], who design and analyze an algorithm for minimizing
L to within a multiplicative factor of 1 4 ¢ for arbitrarily small § (a
PTAS) using complete knowledge of the entire preference matrix
w(u,v).

4.2 Ranking Close to the Top

Assume we are interested, as often is the case in IR ranking liter-
ature (e.g., [31]), in a ranking algorithm that ranks well at the top of
the list. In other words, we decompose the problem into two parts:
(1) Identify the top elements (2) Rank them. If ¢ denotes the num-
ber of top elements we care about, we ignore preferences among

the bottom n — ¢ elements. We could run ALGL®® while abandon-
ing parts of the recursion tree containing only elements that will
clearly end up in the bottom n — ¢ places (see also analysis in [2]
for a similar idea).

S. CONCLUSIONS AND DISCUSSIONS

In behavioral decision theory, a prevalent concept is that prefer-
ences are constructed by the user within the task and the context
of the decision task [30, 33]. The constructive-preference approach
argues that people often base their preferences in a given situation
on information available at the time of the preference decision is
made. This concept has been demonstrated in a variety of experi-
ments.

We argue that relevance measuring for IR follows similar context
effects. Relevance, as used by many metrics, is often assumed to be
independent of context. That is, the perceived relevance of search
result A should not depend on the perceived relevance of search
result B. We provided empirical evidence for the contrary. In our
experiments, we showed that the ordering of two results as induced
from independent relevance responses statistically differs from that
obtained from soliciting responses where the results provide mutual
context In addition, we have demonstrated that when moving from
pairs to triplets, the marginal preference information on pairs of
results (contained in the triplet) does not change much. This means
that pairwise comparisons are relatively stable within higher order
tuples.

We also experimented with several types of contexts. From our
results, one might deduce that asking users for relevance for similar
results (as in the obfuscation experiment in section 3.7) might give
more accurate results than asking for preference. On the other hand,
asking users for preference on very quality-diverse results (section
3.6) might give more accurate results than relevance.

The classic evaluation metrics cannot be applied to rankings when
the ground truth is built from pairwise comparisons. Indeed, these
metrics are defined for independent graded relevance information.
In attempting to provide alternative evaluation metrics, many re-
searchers have tried to avoid the quadratic nature of the problem.
We have shown that the arguably simplest such function is amenable
to analysis using sampling ideas borrowed from statistical learning
theory. Using a basic result, we conjecture that the query com-
plexity (number of pairwise preferences we pay for) required for
almost perfect optimization of the function for any practical pur-
pose is O(n polylogn). This analysis could also be done on a
weighted version of our function assigning more weight to pairs
that are closer to the top of the output ranking, in the spirit of wpref
[7, 11]. We leave this to future work.

There are many other directions for further research. We did
not discuss topic sensitivity: How should ranking be performed in
systems requiring result diversification when numerous incompa-
rable topics are relevant? This aspect is of increasing importance
in IR. We also did not investigate the effect of different query types
(transactional, navigational, etc.) on our results. Similar empirical
analysis should be done in each category.
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